Homework 1 Solutions

Problem 2.6

Two jurors are selected from 4 alternates to serve at a murder trial. Using the notation $A_{1} A_{3}$, for example, to denote the simple event that alternates 1 and 3 are selected, list the 6 elements of the sample space.

Solution: $\quad S=\left\{A_{1} A_{2}, A_{1} A_{3}, A_{1} A_{4}, A_{2} A_{3}, A_{2} A_{4}, A_{3} A_{4}\right\}$.

Problem 2.8

An experiment involves tossing a pair of dice, 1 green and 1 red, and recording the numbers that come up. If x equals the outcome on the green die and y the outcome on the red die, let (x, y) denote the corresponding element of the sample space S. For this sample space:
(a) list the elements corresponding to the event A that the sum is greater than 8 ;
(b) list the elements corresponding to the event B that a 2 occurs on either die;
(c) list the elements corresponding to the event C that a number greater than 4 comes up on the green die;
(d) list the elements corresponding to the event $A \cap C$;
(e) list the elements corresponding to the event $A \cap B$;
(f) list the elements corresponding to the event $B \cap C$;
(g) construct a Venn diagram to illustrate the intersections and unions of the events A, B, and C.

Solution:

(a) $A=\{(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)\}$.
(b) $B=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(2,1),(2,3),(2,4),(2,5),(2,6)\}$.
(c) $C=\{(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$.
(d) $A \cap C=\{(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)\}$.
(e) $A \cap B=\emptyset$.
(f) $B \cap C=\{(5,2),(6,2)\}$.

Problem 2.10

An engineering firm is hired to determine if certain waterways in Virginia are safe for fishing. Samples are taken from three rivers.
(a) List the elements of a sample space S, using the letters F for "safe to fish" and N for "not safe to fish."
(b) List the elements of S corresponding to event E that at least two of the rivers are safe for fishing.
(c) Define an event that has as its elements the points

$$
\{F F F, N F F, F F N, N F N\}
$$

Solution:

(a) $S=\{F F F, F F N, F N F, N F F, F N N, N F N, N N F, N N N\}$.
(b) $E=\{F F F, F F N, F N F, N F F\}$.
(c) The second river is safe for fishing.

Problem 2.14

If $S=\{0,1,2,3,4,5,6,7,8,9\}$ and $A=\{0,2,4,6,8\}, B=\{1,3,5,7,9\}, C=\{2,3,4,5\}$, and $D=\{1,6,7\}$, list the elements of the sets corresponding to the following events:
(a) $A \cup C$;
(b) $A \cap B$;
(c) C^{\prime};
(d) $\left(C^{\prime} \cap D\right) \cup B$;
(e) $(S \cap C)^{\prime}$;
(f) $A \cap C \cap D^{\prime}$.

Solution:

(a) $A \cup C=\{0,2,3,4,5,6,8\}$.
(b) $A \cap B=\emptyset$.
(c) $C^{\prime}=\{0,1,6,7,8,9\}$.
(d) $C^{\prime} \cap D=\{1,6,7\}$, so $\left(C^{\prime} \cap D\right) \cup B=\{1,3,5,6,7,9\}$.
(e) $(S \cap C)^{\prime}=C^{\prime}=\{0,1,6,7,8,9\}$.
(f) $A \cap C=\{2,4\}$, so $A \cap C \cap D^{\prime}=\{2,4\}$.

Problem 2.16

If $S=\{x \mid 0<x<12\}, M=\{x \mid 1<x<9\}$, and $N=\{x \mid 0<x<5\}$, find
(a) $M \cup N$;
(b) $M \cap N$;
(c) $M^{\prime} \cap N^{\prime}$.

Solution:

(a) $M \cup N=\{x \mid 0<x<9\}$.
(b) $M \cap N=\{x \mid 1<x<5\}$.
(c) $M^{\prime} \cap N^{\prime}=\{x \mid 9 \leq x<12\}$.

Problem 2.20

Suppose that a family is leaving on a summer vacation in their camper and that M is the event that they will experience mechanical problems, T is the event that they will receive a ticket for committing a traffic violation, and V is the event that they will arrive at a campsite with no vacancies. Referring to the Venn diagram below, list the numbers of the regions that represent the following events:
(a) The family will experience no mechanical problems and commit no traffic violation but will arrive at a campsite with no vacancies.
(b) The family will experience both mechanical problems and trouble in locating a campsite with a vacancy but will not receive a ticket for a traffic violation.
(c) The family will either have mechanical trouble or arrive at a campsite with no vacancies but will not receive a ticket for committing a traffic violation.
(d) The family will not arrive at a campsite with no vacancies.

Solution:
(a) 6 ;
(b) 2 ;
(c) $2,5,6$;
(d) $4,5,7,8$.

